RUS  ENG
Full version
JOURNALS // Matematicheskie Zametki // Archive

Mat. Zametki, 2008 Volume 83, Issue 4, Pages 590–605 (Mi mzm4578)

This article is cited in 4 papers

Combinatorial Construction of Tangent Vector Fields on Spheres

A. A. Ohnikyan

Yerevan State University

Abstract: For every odd $n$, on the sphere $S^n$, $\rho(n)-1$ linear orthonormal tangent vector fields, where $\rho(n)$ is the Hurwitz–Radon number, are explicitly constructed. For each $8\times8$ sign matrix, compositions for infinite-dimensional positive definite quadratic forms are explicitly constructed. The infinite-dimensional real normed algebras thus arising are proved to have certain properties of associativity and divisibility type.

Keywords: linear orthonormal tangent vector field, odd-dimensional sphere, composition of quadratic forms, Clifford algebra, Hurwitz–Radon theorem, Cayley number.

UDC: 515.164.322

Received: 28.04.2006
Revised: 22.06.2007

DOI: 10.4213/mzm4578


 English version:
Mathematical Notes, 2008, 83:4, 539–553

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026