RUS  ENG
Full version
JOURNALS // Matematicheskie Zametki // Archive

Mat. Zametki, 2010 Volume 87, Issue 3, Pages 429–442 (Mi mzm4508)

This article is cited in 4 papers

Approximation of Classes $B^r_{p,\theta}$ of Periodic Functions of One and Several Variables

A. S. Romanyuk

Institute of Mathematics, Ukrainian National Academy of Sciences

Abstract: We obtain order-sharp estimates of best approximations to the classes $B^r_{p,\theta}$ of periodic functions of several variables in the space $L_q$, $1\le p,q\le\infty$, by trigonometric polynomials with “numbers” of harmonics from step hyperbolic crosses. In the one-dimensional case, we establish the order of deviation of Fourier partial sums of functions from the classes $B^{r_1}_{1,\theta}$ in the space $L_1$.

Keywords: class $B^r_{p,\theta}$ of periodic functions, trigonometric polynomial, hyperbolic cross, Bernoulli kernel, Fourier hyperbolic sum, Valée-Poussin kernel, Fejér kernel.

UDC: 517.51

Received: 29.01.2008

DOI: 10.4213/mzm4508


 English version:
Mathematical Notes, 2010, 87:3, 403–415

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026