RUS  ENG
Full version
JOURNALS // Matematicheskie Zametki // Archive

Mat. Zametki, 2008 Volume 83, Issue 2, Pages 273–285 (Mi mzm4419)

This article is cited in 2 papers

Zeta Functions of Bielliptic Surfaces over Finite Fields

S. Yu. Rybakov

Independent University of Moscow

Abstract: Let $S$ be a bielliptic surface over a finite field, and let the elliptic curve $B$ be the image of the Albanese mapping $S\to B$. In this case, the zeta function of the surface is equal to the zeta function of the direct product $\mathbb P^1\times B$. A classification of the possible zeta functions of bielliptic surfaces is also presented in the paper.

Keywords: variety over a finite field, zeta function, bielliptic surface, Albanese mapping, elliptic curve, étale cohomology, Frobenius morphism, isogeny class.

UDC: 512.754

Received: 03.04.2007

DOI: 10.4213/mzm4419


 English version:
Mathematical Notes, 2008, 83:2, 246–256

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026