RUS  ENG
Full version
JOURNALS // Matematicheskie Zametki // Archive

Mat. Zametki, 2008 Volume 84, Issue 2, Pages 254–272 (Mi mzm4304)

This article is cited in 2 papers

On a Series of Problems Related to the Borsuk and Nelson–Erdős–Hadwiger Problems

A. M. Raigorodskii, M. M. Kityaev

M. V. Lomonosov Moscow State University, Faculty of Mechanics and Mathematics

Abstract: In the present paper, a series of problems connecting the Borsuk and Nelson–Erdős–Hadwiger classical problems in combinatorial geometry is considered. The problem has to do with finding the number $\chi(n,a,d)$ equal to the minimal number of colors needed to color an arbitrary set of diameter $d$ in $n$-dimensional Euclidean space in such a way that the distance between points of the same color cannot be equal to $a$. Some new lower bounds for the quantity $\chi(n,a,d)$ are obtained.

Keywords: Borsuk problem, Nelson–Erdős–Hadwiger problem, chromatic number, Stirling formula, infinite graph, Euclidean space, distribution of primes.

UDC: 514

Received: 10.04.2007

DOI: 10.4213/mzm4304


 English version:
Mathematical Notes, 2008, 84:2, 239–255

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026