RUS  ENG
Full version
JOURNALS // Matematicheskie Zametki // Archive

Mat. Zametki, 2009 Volume 85, Issue 4, Pages 483–501 (Mi mzm4298)

This article is cited in 9 papers

Basis of Graded Identities of the Superalgebra $M_{1,2}(F)$

I. V. Averyanov

Ulyanovsk State University

Abstract: Denote by $\operatorname{Mat}_{k,l}(F)$ the algebra $M_n(F)$ of matrices of order $n=k+l$ with the grading $(\operatorname{Mat}^0_{k,l}(F), \operatorname{Mat}^1_{k,l}(F))$, where $\operatorname{Mat}^0_{k,l}(F)$ admits the basis $\{e_{ij},i\le k,j\le k\}\cup\{e_{ij},i>k,j>k\}$ and $\operatorname{Mat}^1_{k,l}(F)$ admits the basis $\{e_{ij},i\le k,j>k\}\cup\{e_{ij},i>k,j\ge k\}$. Denote by $M_{k,l}(F)$ the Grassmann envelope of the superalgebra $\operatorname{Mat}_{k,l}(F)$. In the paper, bases of the graded identities of the superalgebras $\operatorname{Mat}_{1,2}(F)$ and $M_{1,2}(F)$ are described.

Keywords: matrix algebra, superalgebra, Grassmann envelope, graded algebra, graded identity, permutation group, Young tableau, ideal.

UDC: 512.552

Received: 02.11.2007
Revised: 23.05.2008

DOI: 10.4213/mzm4298


 English version:
Mathematical Notes, 2009, 85:4, 467–483

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026