RUS  ENG
Full version
JOURNALS // Matematicheskie Zametki // Archive

Mat. Zametki, 2007 Volume 82, Issue 6, Pages 822–828 (Mi mzm4193)

This article is cited in 2 papers

Asymptotics of the Number of Repetition-Free Boolean Functions in the Elementary Basis

O. V. Zubkov

Irkutsk State Pedagogical University

Abstract: In this paper, we obtain an asymptotic approximation of the number $K_n$ of repetition-free Boolean functions of $n$ variables in the elementary basis $\{\&,\vee,-\}$ as $n\to\infty$ with relative error $O(1/\sqrt n\,)$. As a consequence, we verify conjectures on the existence of constants $\delta$ and $\alpha$ such that
$$ K_n\sim\delta\cdot\alpha^{n-1}\cdot(2n-3)!!, $$
and obtain these constants.

Keywords: repetition-free Boolean function, Euler number, Stirling number of the second kind, improper integral, two-pole serial set.

UDC: 519.11+519.71

Received: 13.05.2006
Revised: 29.01.2007

DOI: 10.4213/mzm4193


 English version:
Mathematical Notes, 2007, 82:6, 741–747

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026