RUS  ENG
Full version
JOURNALS // Matematicheskie Zametki // Archive

Mat. Zametki, 2002 Volume 72, Issue 2, Pages 216–226 (Mi mzm416)

This article is cited in 1 paper

Functional Inequalities and Relative Capacities

V. S. Klimova, E. S. Panasenkob

a P. G. Demidov Yaroslavl State University
b Orel State University

Abstract: In this paper, we study functional inequalities of the form
$$ \|f;Q\| \le C\varphi (\|\nabla f;P\|,\|f;R\|), $$
where $P$, $Q$, and $R$ are Banach ideal spaces of functions on a domain $\Omega \subset \mathbb R^n$, the constant $C$ is the same for all compactly supported functions $f$ satisfying the Lipschitz condition, $\nabla f$ is the gradient of $f$, and $\varphi $ is a continuous degree one homogeneous function. We give compatibility conditions for norms on the spaces $P$, $Q$, and $R$ that ensure the equivalence of the inequality in question to an isoperimetric inequality between the norms of indicators and relative capacities of compact subsets of the domain $\Omega $.

UDC: 517.518.235

Received: 02.03.1998

DOI: 10.4213/mzm416


 English version:
Mathematical Notes, 2002, 72:2, 193–203

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026