RUS  ENG
Full version
JOURNALS // Matematicheskie Zametki // Archive

Mat. Zametki, 2008 Volume 83, Issue 6, Pages 831–842 (Mi mzm4132)

A Necessary Condition for the Completeness of the System $\{e^{-\lambda_nt}\mid\operatorname{Re}\lambda_n>0\}$ in the Spaces $C_0(\mathbb R_+)$ and $L^p(\mathbb R_+)$, $p>2$

I. O. Krasnobaev

M. V. Lomonosov Moscow State University

Abstract: We obtain a necessary condition for the completeness of the system
$$ e(\Lambda)=\{e^{-\lambda_nt}\mid\operatorname{Re}\lambda_n>0,\,n\in\mathbb Z\} $$
in the spaces $C_0$ and $L^p(\mathbb R_+)$, $p>2$, for the case in which the set of limit points of the sequence $\{\lambda_n\}$ is countable and separable.

Keywords: sequence of exponentials, the spaces $C_0(\mathbb R_+)$ and $L^p(\mathbb R_+)$, $p>2$, Szász condition, Hardy class of functions, Bernstein's inequality, analytic function.

UDC: 517.538.2

Received: 30.07.2007

DOI: 10.4213/mzm4132


 English version:
Mathematical Notes, 2008, 83:6, 759–769

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026