RUS  ENG
Full version
JOURNALS // Matematicheskie Zametki // Archive

Mat. Zametki, 2009 Volume 85, Issue 4, Pages 524–537 (Mi mzm4118)

This article is cited in 4 papers

Integral Formula for a Generalized Sato–Levine Invariant in Magnetic Hydrodynamics

P. M. Akhmet'eva, O. V. Kunakovskayab

a Steklov Mathematical Institute, Russian Academy of Sciences
b Voronezh State University

Abstract: For a pair of divergence-free vector fields $\mathbf B$ and $\widetilde{\mathbf B}$ respectively localized in two oriented tubes $U$ and $\widetilde U$ in $\mathbb R^3$, we propose a fourth-order integral $W$ and describe the dependence between the integral $W$ and a higher topological invariant $\beta=\beta(l,\widetilde l)$ (namely, the generalized Sato–Levine invariant). The new integral is a generalization of the well-known integral, which was defined earlier for two tubes with zero linking number.

Keywords: topological invariant, Sato–Levine invariant, oriented magnetic tube, linking number, magnetic hydrodynamics, Lie derivative, Massey product, gradient field.

UDC: 517.958

Received: 10.10.2007
Revised: 21.04.2008

DOI: 10.4213/mzm4118


 English version:
Mathematical Notes, 2009, 85:4, 503–514

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026