RUS  ENG
Full version
JOURNALS // Matematicheskie Zametki // Archive

Mat. Zametki, 2008 Volume 84, Issue 5, Pages 658–666 (Mi mzm4094)

This article is cited in 2 papers

Hyperspace of Max-Plus Convex Compact Sets

L. E. Bazilevich

Lviv Polytechnic National University

Abstract: The hyperspace $\operatorname{mpcc}(\mathbb R^n)$ of max-plus convex compact subsets of $\mathbb R^n$, $n\ge2$, is considered. The main result is as follows: this hyperspace is a contractible manifold modeled on the Hilbert cube $Q$. It is also shown that the projection mapping $\operatorname{mpcc}(\mathbb R^n) \to\operatorname{mpcc}(\mathbb R^m)$, $n\ge m$, is open. Moreover, it is proved that the hyperspace $\operatorname{mpcc}(I^{\omega_1})$ of the Tikhonov [Tychonoff] cube $I^{\omega_1}$ is homeomorphic to $I^{\omega_1}$.

Keywords: compact convex set, max-plus convexity, contractible manifold, topological linear space, Hilbert cube, Tikhonov cube, retract, separable metric space.

UDC: 515.12

Received: 23.04.2007

DOI: 10.4213/mzm4094


 English version:
Mathematical Notes, 2008, 84:5, 615–622

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026