RUS  ENG
Full version
JOURNALS // Matematicheskie Zametki // Archive

Mat. Zametki, 2008 Volume 83, Issue 5, Pages 722–740 (Mi mzm4046)

This article is cited in 5 papers

Convergence of Biorthogonal Series in the System of Contractions and Translations of Functions in the Spaces $L^p[0,1]$

P. A. Terekhin

Saratov State University named after N. G. Chernyshevsky

Abstract: We obtain conditions for the convergence in the spaces $L^p[0,1]$, $1\le p<\infty$, of biorthogonal series of the form
$$ f=\sum_{n=0}^\infty(f,\psi_n)\varphi_n $$
in the system $\{\varphi_n\}_{n\ge 0}$ of contractions and translations of a function $\varphi$. The proposed conditions are stated with regard to the fact that the functions belong to the space $\mathfrak L^p$ of absolutely bundle-convergent Fourier–Haar series with norm
$$ \|f\|_p^\ast=|(f,\chi_0)| +\sum_{k=0}^\infty 2^{k(1/2-1/p)} \biggl(\mspace{2mu}\sum_{n=2^k}^{2^{k+1}-1} |(f,\chi_n)|^p\biggr)^{1/p}, $$
where $(f,\chi_n)$, $n=0,1,\dots$, are the Fourier coefficients of a function $f\in L^p[0,1]$ in the Haar system $\{\chi_n\}_{n\ge 0}$. In particular, we present conditions for the system $\{\varphi_n\}_{n\ge 0}$ of contractions and translations of a function $\varphi$ to be a basis for the spaces $L^p[0,1]$ and $\mathfrak L^p$.

Keywords: biorthogonal series, system of contractions and translations of a function, the space $L^p[0,1]$, bundle convergence of Fourier–Haar series, Haar function, wavelet theory.

UDC: 517.51

Received: 19.04.2007
Revised: 11.11.2007

DOI: 10.4213/mzm4046


 English version:
Mathematical Notes, 2008, 83:5, 657–674

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026