RUS  ENG
Full version
JOURNALS // Matematicheskie Zametki // Archive

Mat. Zametki, 2008 Volume 84, Issue 4, Pages 577–582 (Mi mzm4029)

Isometric Lagrangian Immersion of Horocycles of the Hyperbolic Plane in Complex Space

L. A. Masal'tsev

V. N. Karazin Kharkiv National University

Abstract: We prove that there exists an isometric Lagrangian immersion of a horocycle of the hyperbolic plane in the complex space $\mathbb C^2$, and there exists an isometric Lagrangian immersion of a horoball of hyperbolic (Lobachevski) space $H^3$ in the complex space $\mathbb C^3$.

Keywords: hyperbolic plane, horocycle, hyperbolic (Lobachevski) space, horoball, Lagrangian submanifold, Lagrangian immersion, Gauss–Codazzi–Ricci equations, Riemann connection, fiber bundle.

UDC: 514

Received: 07.09.2006
Revised: 08.11.2007

DOI: 10.4213/mzm4029


 English version:
Mathematical Notes, 2008, 84:4, 538–543

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026