RUS  ENG
Full version
JOURNALS // Matematicheskie Zametki // Archive

Mat. Zametki, 2009 Volume 85, Issue 2, Pages 300–312 (Mi mzm4014)

This article is cited in 2 papers

On the Zeros of Analytic Functions in the Disk with a Given Majorant near Its Boundary

F. A. Shamoyan

I. G. Petrovsky Bryansk State University

Abstract: Suppose that $\lambda$ is an arbitrary positive function from $C[0,1)$, such that $\lambda(r)\to\infty$ as $r\to 1-0$ and satisfying some growth regularity conditions, $A(\lambda)$ is the set of all holomorphic functions $f$ in the unit disk for which ${\ln}|f(z)|\le c\cdot\lambda(|z|)$, $|z|<1$. In this paper, we establish that there exists a function $f\in A(\lambda)$ with root set $\{z_k\}_{k=1}^{+\infty}$ such that the sequence $\{|z_k|\}_{k=1}^{+\infty}$ is the uniqueness set for the class $A(\lambda)$.

Keywords: analytic function, holomorphic function, root set, uniqueness set, Nevanlinna characteristic, Blaschke condition.

UDC: 517.53

Received: 23.01.2007
Revised: 28.04.2008

DOI: 10.4213/mzm4014


 English version:
Mathematical Notes, 2009, 85:2, 274–287

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026