RUS  ENG
Full version
JOURNALS // Matematicheskie Zametki // Archive

Mat. Zametki, 2008 Volume 83, Issue 1, Pages 129–138 (Mi mzm3771)

This article is cited in 5 papers

On Asymptotic Properties of Interpolation Polynomials

D. V. Khristoforov

M. V. Lomonosov Moscow State University, Faculty of Mechanics and Mathematics

Abstract: In this paper, we study the asymptotic properties of the polynomials $P_n(z)=P_n(z;f)$, corresponding to an interpolation table $\alpha\subset E$, where $E$ is a bounded continuum in the complex plane with a connected complement, the table $\alpha$ satisfies the Kakehashi condition, and $f$ is an arbitrary function holomorphic on $E$. In particular, for zeros of such polynomials, we obtain a generalization of the classical Jentzsch–Szegő theorem on the distribution of zeros of partial sums of Taylor series.

Keywords: interpolation polynomial, Taylor series, holomorphic function, Hermite interpolation formula, Cauchy–Hadamard formula.

UDC: 517.53

Received: 09.04.2007

DOI: 10.4213/mzm3771


 English version:
Mathematical Notes, 2008, 83:1, 116–124

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026