RUS  ENG
Full version
JOURNALS // Matematicheskie Zametki // Archive

Mat. Zametki, 2002 Volume 71, Issue 5, Pages 677–685 (Mi mzm376)

This article is cited in 2 papers

Hopf Algebra Dual to a Polynomial Algebra over a Commutative Ring

V. L. Kurakin


Abstract: For a polynomial algebra $A=R[X]$ or $R[X,X^{-1}]$ in several variables over a commutative ring $R$ with a Hopf algebra structure $(A,m,e,\Delta,\varepsilon,S)$ the existence of the dual Hopf algebra $(A^\circ,\Delta ^\circ,\varepsilon ^\circ,m^\circ,e^\circ,S^\circ)$ is proved.

UDC: 512.66

Received: 02.10.2001

DOI: 10.4213/mzm376


 English version:
Mathematical Notes, 2002, 71:5, 617–623

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026