Abstract:
For a polynomial algebra $A=R[X]$ or $R[X,X^{-1}]$ in several variables over a commutative ring $R$ with a Hopf algebra structure $(A,m,e,\Delta,\varepsilon,S)$ the existence of the dual Hopf algebra $(A^\circ,\Delta ^\circ,\varepsilon ^\circ,m^\circ,e^\circ,S^\circ)$ is proved.