RUS  ENG
Full version
JOURNALS // Matematicheskie Zametki // Archive

Mat. Zametki, 2007 Volume 82, Issue 1, Pages 118–124 (Mi mzm3759)

This article is cited in 2 papers

Asplund Space: Another Criterion

V. I. Rybakov

Tula State Pedagogical University

Abstract: The theorem proved in this paper establishes conditions under which a Banach space $X$ is an Asplund space (i.e., its dual space is a space with the $RN$ property). The theorem is formulated in terms of the existence of a supersequentially compact set in $(B(X^{**}),\omega^*)$, where $B(X^{**})$ stands for the unit ball of the second dual of $X$ and $\omega^*$ for the weak topology on the ball. The example presented in the paper shows that one cannot get rid of some restrictive conditions in the theorem in general.

Keywords: Asplund space, supersequentially compact set, Radon–Nikodým property, Bochner integral, Banach space.

UDC: 517.98

Received: 05.05.2006

DOI: 10.4213/mzm3759


 English version:
Mathematical Notes, 2007, 82:1, 104–109

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026