RUS  ENG
Full version
JOURNALS // Matematicheskie Zametki // Archive

Mat. Zametki, 2007 Volume 82, Issue 1, Pages 27–35 (Mi mzm3750)

This article is cited in 3 papers

Generalized Jordan Matrix of a Linear Operator

S. G. Dalalyan

Yerevan State University

Abstract: For any linear operator defined over an arbitrary field $\mathbf k$, there is a basis in which this matrix is a generalized Jordan matrix (of the second kind) with elements in the field $\mathbf k$. For any linear operator, such a matrix is defined uniquely up to permutation of diagonal blocks.

Keywords: linear operator over a field, Jordan normal form, generalized Jordan matrix, Jordan cell, algebraically closed field, companion matrix, block-diagonal matrix, splitting field.

UDC: 512

Received: 06.10.2006

DOI: 10.4213/mzm3750


 English version:
Mathematical Notes, 2007, 82:1, 25–32

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026