RUS  ENG
Full version
JOURNALS // Matematicheskie Zametki // Archive

Mat. Zametki, 2007 Volume 81, Issue 3, Pages 341–347 (Mi mzm3677)

This article is cited in 1 paper

Singular Strictly Increasing Functions and a Problem on Partitions of Closed Intervals

I. S. Kats

Odessa State Academy of Food Technology

Abstract: We establish that the problem of constructing a strictly increasing singular function is equivalent to the problem of constructing subsets $\mathscr P$ and $\mathscr Q$ of a closed interval $[a;b]\subset\mathbb R$ such that (1) $\mathscr P\cap\mathscr Q=\varnothing$; (2) $\mathscr P\cup\mathscr Q=[a;b]$; (3) the Lebesgue measures of the intersections of $\mathscr P$ and $\mathscr Q$ with an arbitrary interval $J\subset[a;b]$ are positive.

Keywords: singular function, Cantor set, perfect set, heavily intermittent partition, Borel set, Lebesgue measurable set, completely additive function.

UDC: 517.5

Received: 04.07.2005
Revised: 09.11.2005

DOI: 10.4213/mzm3677


 English version:
Mathematical Notes, 2007, 81:3, 302–307

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026