RUS  ENG
Full version
JOURNALS // Matematicheskie Zametki // Archive

Mat. Zametki, 2007 Volume 81, Issue 3, Pages 328–334 (Mi mzm3675)

This article is cited in 2 papers

Asymptotic Behavior of Eigenvalues of the Laplace Operator in Infinite Cylinders Perturbed by Transverse Extensions

V. V. Grushin

Moscow State Institute of Electronics and Mathematics

Abstract: We present sufficient conditions for the existence of an eigenvalue of the Laplace operator with zero Dirichlet conditions in a weakly perturbed infinite cylinder in the case of localized perturbations which are extensions along the transverse coordinates with coefficients depending on the longitudinal coordinate. If such an eigenvalue exists, then, for this eigenvalue, we obtain an asymptotic formula with respect to a small parameter characterizing the values of extensions.

Keywords: Laplace operator, eigenvalue, asymptotics, small parameter, infinite cylinder, localized perturbations.

UDC: 517.958

Received: 13.12.2005

DOI: 10.4213/mzm3675


 English version:
Mathematical Notes, 2007, 81:3, 291–296

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026