RUS  ENG
Full version
JOURNALS // Matematicheskie Zametki // Archive

Mat. Zametki, 2002 Volume 71, Issue 4, Pages 496–507 (Mi mzm361)

This article is cited in 2 papers

On Milnor's Invariants of 4-Component Links

P. M. Akhmet'eva, D. Repovšb, I. Maleshichb

a Institute of Terrestrial Magnetism, Ionosphere and Radio Wave Propagation
b University of Ljubljana

Abstract: We study the behavior of Milnor's $\mu$-invariants of three- and four-component links with respect to the discriminant determined by $\Delta$-moves of links. We introduce a new type of $\Delta$-move, balanced $\Delta$-moves, or, briefly, $B\Delta$-moves. Since each four-component link is equivalent to a standard link under a sequence of balanced $\Delta$-moves, $\Delta$-moves that involve at most two components, and Reidemeister moves, we manage to define axiomatically $\mu$-invariants of length 3 for arbitrary semibounding links.

UDC: 517

Received: 29.11.2000

DOI: 10.4213/mzm361


 English version:
Mathematical Notes, 2002, 71:4, 455–463

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026