RUS  ENG
Full version
JOURNALS // Matematicheskie Zametki // Archive

Mat. Zametki, 2004 Volume 75, Issue 3, Pages 342–349 (Mi mzm36)

This article is cited in 26 papers

Minimality of Convergence in Measure Topologies on Finite von Neumann Algebras

A. M. Bikchentaev

Kazan State University

Abstract: We prove that the natural embedding of the metric ideal space on a finite von Neumann algebra ${\mathscr M}$ into the $*$-algebra of measurable operators $\widetilde {\mathscr M}$ endowed with the topology of convergence in measure is continuous. Using this fact, we prove that the topology of convergence in measure is a minimal one among all metrizable topologies consistent with the ring structure on $\widetilde {\mathscr M}$.

UDC: 517.986+517.987

Received: 18.12.2002
Revised: 05.08.2003

DOI: 10.4213/mzm36


 English version:
Mathematical Notes, 2004, 75:3, 315–321

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026