RUS  ENG
Full version
JOURNALS // Matematicheskie Zametki // Archive

Mat. Zametki, 2007 Volume 81, Issue 1, Pages 32–42 (Mi mzm3515)

This article is cited in 6 papers

Quantization of Periodic Motions on Compact Surfaces of Constant Negative Curvature in a Magnetic Field

J. Brüninga, R. V. Nekrasova, A. I. Shafarevichb

a M. V. Lomonosov Moscow State University
b M. V. Lomonosov Moscow State University, Faculty of Mechanics and Mathematics

Abstract: We use the semiclassical approach to study the spectral problem for the Schrödinger operator of a charged particle confined to a two-dimensional compact surface of constant negative curvature. We classify modes of classical motion in the integrable domain $E<E_{\textup{cr}}$ and obtain a classification of semiclassical solutions as a consequence. We construct a spectral series (spectrum part approximated by semiclassical eigenvalues) corresponding to energies not exceeding the threshold value $E_{\textup{cr}}$; the degeneration multiplicity is computed for each eigenvalue.

Keywords: Schrödinger equation, eigenvalue asymptotics, semiclassical approximation, confined classical motion, surface of negative curvature, symplectic structure.

UDC: 517.958+530.145.6

Received: 17.05.2006
Revised: 28.06.2006

DOI: 10.4213/mzm3515


 English version:
Mathematical Notes, 2007, 81:1, 28–36

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026