RUS  ENG
Full version
JOURNALS // Matematicheskie Zametki // Archive

Mat. Zametki, 2006 Volume 80, Issue 6, Pages 902–907 (Mi mzm3365)

This article is cited in 15 papers

Some conformal and projective scalar invariants of Riemannian manifolds

S. E. Stepanov

Vladimir State Pedagogical University

Abstract: It is proved that, on any closed oriented Riemannian $n$-manifold, the vector spaces of conformal Killing, Killing, and closed conformal Killing $r$-forms, where $1\le r\le n-1$, have finite dimensions $t_r$, $k_r$, and $p_r$, respectively. The numbers $t_r$ are conformal scalar invariants of the manifold, and the numbers $k_r$ and $p_r$ are projective scalar invariants; they are dual in the sense that $t_r=t_{n-r}$ and $k_r=p_{n-r}$. Moreover, an explicit expression for a conformal Killing $r$-form on a conformally flat Riemannian $n$-manifold is given.

UDC: 514.764.212

Received: 26.09.2005
Revised: 03.05.2006

DOI: 10.4213/mzm3365


 English version:
Mathematical Notes, 2006, 80:6, 848–852

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026