RUS  ENG
Full version
JOURNALS // Matematicheskie Zametki // Archive

Mat. Zametki, 2002 Volume 71, Issue 1, Pages 130–134 (Mi mzm334)

Augmentation and Modification Problems for Hermitian Matrices

E. E. Tyrtyshnikov, V. N. Chugunov

Institute of Numerical Mathematics, Russian Academy of Sciences

Abstract: We obtain necessary and sufficient conditions for the solvability of the augmentation and modification problems of order $r$ for Hermitian matrices. The augmentation problem consists in the construction of a Hermitian $((n+r)\times (n+r))$-matrix with a given $(n\times n)$-block $A_{11}$ in block $(2\times 2)$-representation and with the prescribed eigenvalues. The modification problem consists in the construction of a Hermitian $(n\times n)$-matrix $B$ of rank not greater than $r$ so that the obtained matrix, being added to a given Hermitian $(n\times n)$-matrix $A$, will have the required spectrum. We give an estimate for the minimal number of different eigenvalues of the solutions to these problems.

UDC: 519.6

Received: 25.10.2000

DOI: 10.4213/mzm334


 English version:
Mathematical Notes, 2002, 71:1, 118–122

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026