RUS  ENG
Full version
JOURNALS // Matematicheskie Zametki // Archive

Mat. Zametki, 2003 Volume 74, Issue 5, Pages 762–781 (Mi mzm297)

This article is cited in 4 papers

On the Strong Resolvent Convergence of the Schrödinger Evolution to Quantum Stochastics

A. M. Chebotareva, G. V. Ryzhakovb

a M. V. Lomonosov Moscow State University, Faculty of Physics
b M. V. Lomonosov Moscow State University

Abstract: For a class of Hamiltonians including a model of the quantum detector of gravitational waves, we prove the strong convergence of the Schrödinger evolution to quantum stochastics. We show that the strong resolvent limit of a sequence of self-adjoint Hamiltonians is a symmetric boundary-value problem in Fock space, and the limit evolution of the partial trace with respect to the mixed state cannot be described by a unique equation of Lindblad type. On the contrary, each component of the mixed state generates a proper evolution law.

UDC: 517.958

Received: 13.12.2002
Revised: 06.07.2003

DOI: 10.4213/mzm297


 English version:
Mathematical Notes, 2003, 74:5, 717–733

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026