RUS  ENG
Full version
JOURNALS // Matematicheskie Zametki // Archive

Mat. Zametki, 2006 Volume 80, Issue 1, Pages 105–114 (Mi mzm2785)

This article is cited in 6 papers

Calculating the First Nontrivial 1-Cocycle in the Space of Long Knots

V. É. Turchinab

a Independent University of Moscow
b Université catholique de Louvain

Abstract: For spaces of knots in $\mathbb{R}^3$, the Vassiliev theory defines the so-called cocycles of finite order. The zero-dimensional cocycles are the finite order invariants. The first nontrivial cocycle of positive dimension in the space of long knots is one-dimensional and is of order 3. We apply the combinatorial formula given by Vassiliev in his paper [1] and find the value $\bmod\, 2$ of this cocycle on 1-cycles obtained by dragging knots one through another or by rotating a knot around a given line.

Keywords: long knot, Vassiliev invariant, finite order cocycle, Casson's invariant.

UDC: 515.164

Received: 09.09.2004

DOI: 10.4213/mzm2785


 English version:
Mathematical Notes, 2006, 80:1, 101–108

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026