RUS  ENG
Full version
JOURNALS // Matematicheskie Zametki // Archive

Mat. Zametki, 2006 Volume 79, Issue 6, Pages 870–878 (Mi mzm2760)

On the boundedness below of trigonometric polynomials of best approximation

V. S. Kolesnikov

Shuya State Pedagogical University

Abstract: As A. S. Belov proved, the partial sums of an even $2\pi$-periodic function f expanded in a Fourier series with convex coefficients $\{a_n\}_{n=0}^\infty$, are uniformly bounded below if the conditions $a_n = O(n^{-1})$, $n\to\infty$, are satisfied; moreover, this assertion is no longer valid if the exponent $-1$ in this condition is replaced by a greater one. In this paper, we obtain analogs of these results for trigonometric polynomials of best approximation to the function $f$ in the metric of $L_{2\pi}^1$.

UDC: 517.5

Received: 08.03.2005

DOI: 10.4213/mzm2760


 English version:
Mathematical Notes, 2006, 79:6, 811–819

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026