RUS  ENG
Full version
JOURNALS // Matematicheskie Zametki // Archive

Mat. Zametki, 2006 Volume 79, Issue 3, Pages 384–395 (Mi mzm2708)

This article is cited in 36 papers

Combinational properties of sets of residues modulo a prime and the Erdős–Graham problem

A. A. Glibichuk

M. V. Lomonosov Moscow State University

Abstract: Consider an arbitrary $\varepsilon>0$ and a sufficiently large prime $p>2$. It is proved that, for any integer $a$, there exist pairwise distinct integers $x_1,x_2,\dots,x_N$, where $N=8([1/\varepsilon+1/2]+1)^2$ such that $1\le x_i\le p^\varepsilon$, $i=1,\dots,N$, and
$$ a\equiv x_1^{-1}+\dotsb+x_N^{-1}\pmod p, $$
where $x_i^{-1}$ is the least positive integer satisfying $x_i^{-1}x_i\equiv1\pmod p$. This improves a result of Sparlinski.

UDC: 511.3

Received: 03.05.2005
Revised: 26.09.2005

DOI: 10.4213/mzm2708


 English version:
Mathematical Notes, 2006, 79:3, 356–365

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026