RUS  ENG
Full version
JOURNALS // Matematicheskie Zametki // Archive

Mat. Zametki, 2006 Volume 79, Issue 3, Pages 362–368 (Mi mzm2706)

This article is cited in 7 papers

A generalization of the Beurling–Lax theorem

B. V. Vinnitskii, V. N. Dil'nyi

Ivan Franko National University of L'viv

Abstract: We obtain conditions for the completeness of the system $\{G(z)e^{\tau z},\tau\leqslant0\}$ in the space $H^2_\sigma(\mathbb C_+)$, $0<\sigma<+\infty$, of functions analytic in the right-hand half-plane for which
$$ \|f\|:=\sup_{-\pi/2<\varphi<\pi/2}\biggl\{\,\int_0^{+\infty}|f(re^{i\varphi})|^2e^{-2r\sigma|\sin\varphi|}\,dr\biggr\}^{1/2}<+\infty. $$


UDC: 517.1

Received: 27.10.2004
Revised: 21.06.2005

DOI: 10.4213/mzm2706


 English version:
Mathematical Notes, 2006, 79:3, 335–341

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026