RUS  ENG
Full version
JOURNALS // Matematicheskie Zametki // Archive

Mat. Zametki, 2003 Volume 74, Issue 3, Pages 323–328 (Mi mzm265)

This article is cited in 3 papers

On Six-Dimensional $G2$-Submanifolds of Cayley Algebras

M. B. Banaru

Smolensk Humanitarian University

Abstract: It is proved that a generic-type 6-dimensional almost Hermitian submanifold of the algebra of octaves is minimal if and only if it belongs to the Gray–Hervella class $G2$. This is a maximal strengthening of the well-known result of Gray, who proved the minimality of the 6-dimensional Kähler submanifolds of the Cayley algebra.

UDC: 513.74

Received: 01.06.2001
Revised: 15.05.2002

DOI: 10.4213/mzm265


 English version:
Mathematical Notes, 2003, 74:3, 311–315

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026