RUS  ENG
Full version
JOURNALS // Matematicheskie Zametki // Archive

Mat. Zametki, 2005 Volume 78, Issue 5, Pages 658–675 (Mi mzm2630)

This article is cited in 10 papers

Embedded Spaces of Trigonometric Splines and Their Wavelet Expansion

Yu. K. Dem'yanovich

Saint-Petersburg State University

Abstract: With each infinite grid $X:\dots<x_{-1}<x_0<x_1<\dotsb$ we associate the system of trigonometric splines $\{\mathfrak T_j^B\}$ of class $C^1(\alpha,\beta)$, the linear space $\mathscr T^B(X)\overset{\textrm{def}}=\{\tilde u\mid\tilde u=\sum_jc_j\mathfrak T_j^B\ \forall\,c_j\in\mathbb R^1\}$, and the functionals $g^{(i)}\in(C^1(\alpha,\beta))^*$ with the biorthogonality property: $\langle g^{(i)},\mathfrak T_j^B\rangle=\delta_{i,j}$ (here $\alpha\overset{\textrm{def}}=\lim_{j\to-\infty}x_j$, $\beta\overset{\textrm{def}}=\lim_{j\to+\infty}x_j$). For nested grids $\overline X\subset X$, we show that the corresponding spaces $\mathscr T^B(\overline X)\subset\mathscr T^B(X)$ are embedded in $\mathscr T^B(X)$ and obtain decomposition and reconstruction formulas for the spline-wavelet expansion $\mathscr T^B(X)=\mathscr T^B(\overline X)\dotplus W$ derived with the help of the system of functionals indicated above.

UDC: 518

Received: 25.08.2004

DOI: 10.4213/mzm2630


 English version:
Mathematical Notes, 2005, 78:5, 615–630

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026