RUS  ENG
Full version
JOURNALS // Matematicheskie Zametki // Archive

Mat. Zametki, 2005 Volume 78, Issue 4, Pages 542–558 (Mi mzm2613)

This article is cited in 6 papers

On Some Extremal Varieties of Associative Algebras

E. A. Kireevaa, A. N. Krasilnikovb

a Moscow State Pedagogical University
b University of Brasilia

Abstract: Suppose that $F$ is a field of prime characteristic $p$ and $\mathbf V_p$ is the variety of associative algebras over $F$ defined by the identities $[[x,y],z]=0$ and $x^p=0$ if $p>2$ and by the identities $[[x,y],z]=0$ and $x^4=0$ if $p=2$ (here $[x,y]=xy-yx$). As is known, the free algebras of countable rank of the varieties $\mathbf V_p$ contain non-finitely generated $T$-spaces. We prove that the varieties $\mathbf V_p$ are minimal with respect to this property.

UDC: 512.552

Received: 15.10.2004

DOI: 10.4213/mzm2613


 English version:
Mathematical Notes, 2005, 78:4, 503–517

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026