RUS  ENG
Full version
JOURNALS // Matematicheskie Zametki // Archive

Mat. Zametki, 2005 Volume 78, Issue 2, Pages 241–250 (Mi mzm2579)

This article is cited in 3 papers

Justification of a Malyshev-Type Formula in the Nonnormal Case

Kh. D. Ikramov, A. M. Nazari

M. V. Lomonosov Moscow State University

Abstract: Let $A$ be a complex matrix of order $n$, $n\ge3$. We associate with $A$ the $3n$
$$ Q(\gamma)=\begin{pmatrix} A&\gamma_1I_n&\gamma_3I_n \\ 0&A&\gamma_2I_n \\ 0&0&A \end{pmatrix}, $$
where $\gamma_1,\gamma_2,\gamma_3$ are scalar parameters and $\gamma=(\gamma_1,\gamma_2,\gamma_3)$. Let $\sigma_i$, $1\le i\le3n$, be the singular values of $Q(\gamma)$, in decreasing order. Under certain assumptions on $A$, the authors have proved earlier that the 2-norm distance from $A$ to the set of matrices with a zero eigenvalue of multiplicity at least 3 is equal to max
$$ \max_{\gamma_1,\gamma_2,\gamma_3\in\mathbb C}\sigma_{3n-2}(Q(\gamma)). $$
Now, the justification of this formula for the distance is given for an arbitrary matrix $A$.

UDC: 519.6

Received: 26.12.2003
Revised: 08.12.2004

DOI: 10.4213/mzm2579


 English version:
Mathematical Notes, 2005, 78:2, 219–227

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026