Abstract:
We establish the existence of a unique solution continuously depending on the initial data to the Cauchy problem for $\{\vec p;\vec h\}$-parabolic equations with time-dependent coefficients for which the initial data are generalized functions (distributions) of slow growth. For a particular class of equations, we state necessary and sufficient conditions for the existence of a unique solution of the Cauchy problem with properties of its spatial variable which are characteristic of its fundamental solution.