Abstract:
We study the simplest one-dimensional model of plasma density balance in a tokamak type system, which can be reduced to an initial boundary-value problem for a second-order parabolic equation with implicit degeneration containing nonlocal (integral) operators. The problem of stabilizing nonstationary solutions to stationary ones is reduced to studying the solvability of a nonlinear integro-differential boundary-value problem. We obtain sufficient conditions for the parameters of this boundary-value problem to provide the existence and the uniqueness of a classical stationary solution, and for this solution we obtain the attraction domain by a constructive method.