RUS  ENG
Full version
JOURNALS // Matematicheskie Zametki // Archive

Mat. Zametki, 2003 Volume 73, Issue 4, Pages 613–624 (Mi mzm209)

This article is cited in 17 papers

Identities for Generalized Polylogarithms

E. A. Ulanskii

M. V. Lomonosov Moscow State University

Abstract: We study the behavior of generalized polylogarithms under the action of the group of fractional-linear transformations of the argument. This group is formed by the transformations $z\mapsto1-z$ and $z\mapsto-z/(1-z)$, the last of which allows us to obtain identities of the form
$$ \operatorname{Li}_k\biggl(\frac{-z}{1-z}\biggr) =-\sum_{|\bar s|=k}\operatorname{Li}_{\bar s}(z). $$
We prove that these identities imply the linear independence of generalized polylogarithms and the algebraic independence of classical polylogarithms over the field $\mathbb C(z)$.

UDC: 517.5

Received: 19.02.2002
Revised: 24.07.2002

DOI: 10.4213/mzm209


 English version:
Mathematical Notes, 2003, 73:4, 571–581

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026