RUS
ENG
Full version
JOURNALS
// Matematicheskie Zametki
// Archive
Mat. Zametki,
1995
Volume 58,
Issue 2,
Pages
218–230
(Mi mzm2038)
This article is cited in
2
papers
Logarithmic growth of the
$L^1$
-norm of the majorant of partial sums of an orthogonal series
B. S. Kashin
a
,
S. I. Sharek
b
a
Steklov Mathematical Institute, Russian Academy of Sciences
b
Case Western Reserve University
Abstract:
It is proved that for any
$N\times N$
orthogonal matrix
$A=\{a_{ij}\}$
we have
$$ \sum_{i=1}^N\max_{1\le n\le N}\biggl|\sum_{j=1}^na_{ij}\biggr| \ge\frac 1{30}N^{1/2}\log N. $$
A multidimensional analog of this result is also established.
Received:
27.01.1995
Fulltext:
PDF file (951 kB)
References
Cited by
English version:
Mathematical Notes, 1995,
58
:2,
824–832
Bibliographic databases:
©
Steklov Math. Inst. of RAS
, 2026