RUS  ENG
Full version
JOURNALS // Matematicheskie Zametki // Archive

Mat. Zametki, 1995 Volume 58, Issue 1, Pages 111–118 (Mi mzm2028)

This article is cited in 7 papers

On the global theory of projective mappings

S. E. Stepanov

Vladimir State Pedagogical University

Abstract: We consider the theory of constant rank projective mappings of compact Riemannian manifolds from the global point of view. We study projective immersions and submersions. As an example of the results, let $f\colon(M,g)\to(N,g')$ be a projective submersion of an $m$-dimensional Riemannian manifold $(M,g)$ onto an $(m-1)$-dimensional Riemannian manifold $(N,g')$. Then $(M,g)$ is locally the Riemannian product of the sheets of two integrable distributions $\operatorname{Ker}f_*$ and $(\operatorname{Ker}f_*)^\bot$ whenever $(M,g)$ is one of the two following types: (a) a complete manifold with $\operatorname{Ric}\geqslant0$ (b) a compact oriented manifold with $\operatorname{Ric}\leqslant0$.

Received: 25.11.1992


 English version:
Mathematical Notes, 1995, 58:1, 752–756

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026