RUS  ENG
Full version
JOURNALS // Matematicheskie Zametki // Archive

Mat. Zametki, 1995 Volume 58, Issue 1, Pages 38–47 (Mi mzm2023)

Integral representation and stabilization of the solution to the Cauchy problem for an equation with two noncommuting operators

A. V. Glushak

Voronezh Polytechnic Institute

Abstract: We obtain an integral representation for the solution to the Cauchy problem
$$ \begin {gathered} \frac{dv}{dt}=\mathbb B_1^2v+\frac 12b(t)(\mathbb B_2\mathbb B_1 +\mathbb B_1\mathbb B_2)v+c(t)\mathbb B_2^2v, \quad v(0)=v_0, \end {gathered} $$
where the operators $\mathbb{B}_1 $ and $\mathbb{B}_2 $ are the infinitesimal generators of strongly continuous groups and $\mathbb B_1\mathbb B_2-\mathbb B_2\mathbb B_1=k\mathbf 1$, $k\ne0$. For the case in which $k=ik_1$, $k_1\in\mathbb R$, it is proved that the solution tends to zero as $t\to+\infty$.

Received: 17.02.1993


 English version:
Mathematical Notes, 1995, 58:1, 703–709

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026