RUS  ENG
Full version
JOURNALS // Matematicheskie Zametki // Archive

Mat. Zametki, 2003 Volume 73, Issue 4, Pages 545–555 (Mi mzm202)

This article is cited in 10 papers

On the Distance to the Closest Matrix with Triple Zero Eigenvalue

Kh. D. Ikramov, A. M. Nazari

M. V. Lomonosov Moscow State University

Abstract: The 2-norm distance from a matrix $A$ to the set $\mathscr M$ of $(n\times n)$ matrices with a zero eigenvalue of multiplicity $\ge3$ is estimated. If
$$ Q(\gamma_1,\gamma_2,\gamma_3)=\begin{pmatrix} A&\gamma_1I_n&\gamma_3I_n \\0&A&\gamma_2I_n \\0&0&A \end{pmatrix}, \qquad n\ge3, $$
then
$$ \rho_2(A,\mathscr M) \ge\max_{\gamma_1,\gamma_2\ge0,\,\gamma_3\in\mathbb C} \sigma_{3n-2}(Q(\gamma_1,\gamma_2,\gamma_3)), $$
where $\sigma_i(\cdot)$ is the $i$th singular value of the corresponding matrix in the decreasing order of singular values. Moreover, if the maximum on the right-hand side is attained at the point $\gamma^*=(\gamma^*_1,\gamma^*_2,\gamma^*_3)$, where $\gamma^*_1\gamma^*_2\ne0$, then, in fact, one has the exact equality
$$ \rho_2(A,\mathscr M) =\sigma_{3n-2}(Q(\gamma^*_1,\gamma^*_2,\gamma^*_3)). $$
This result can be regarded as an extension of Malyshev's formula, which gives the 2-norm distance from $A$ to the set of matrices with a multiple zero eigenvalue.

UDC: 519.6

Received: 20.05.2002

DOI: 10.4213/mzm202


 English version:
Mathematical Notes, 2003, 73:4, 511–520

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026