RUS  ENG
Full version
JOURNALS // Matematicheskie Zametki // Archive

Mat. Zametki, 1996 Volume 60, Issue 4, Pages 556–568 (Mi mzm1862)

Behavior of solutions of quasilinear elliptic inequalities in an unbounded domain

A. B. Shapoval

International Institute of Earthquake Prediction Theory and Mathematical Geophysics RAS

Abstract: We consider the solutions of the inequality $Lu\le\varphi(|{\operatorname{grad}u}|)$, where $L$ is a uniformly elliptic homogeneous operator and $\varphi$ is a function increasing faster than any linear function but not faster than $\xi\ln\xi$, in the unbounded domain
$$ \biggl\{x\in\mathbb R^n\biggm| \sum_{i=2}^nx_i^2<\bigl(\psi(x_1)\bigr)^2, -\infty<x_1<\infty\biggr\}, $$
where $\psi$ is a bounded function with bounded derivative. We estimate the growth of the solutions in terms of $\int_0^{x_1}\frac{dr}{\psi(r)}$. For the special case in which $\varphi(\xi)=a\xi\ln\xi+C$, the solutions $u(x_1,x_2,\dots,x_n)$ grow as $\bigl(\int_0^{x_1}\frac{dr}{\varphi(r)}\bigr)^N$, where $N$ is any given number and $a=a(N)$.

UDC: 517.9

Received: 14.07.1994

DOI: 10.4213/mzm1862


 English version:
Mathematical Notes, 1996, 60:4, 415–424

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026