RUS  ENG
Full version
JOURNALS // Matematicheskie Zametki // Archive

Mat. Zametki, 1996 Volume 59, Issue 4, Pages 521–545 (Mi mzm1747)

This article is cited in 12 papers

Majorants and uniqueness of series in the Franklin system

G. G. Gevorkyan

Yerevan State University

Abstract: It is proved that if a series in the Franklin system converges almost everywhere to a function $f(t)$ and the distribution function of the majorant of partial sums satisfies the condition
$$ \operatorname{mes}\bigl\{t\in[0,1]:s(t)>\lambda\bigr\} =o\biggl(\frac 1\lambda\biggr) $$
as $\lambda\to\infty$, then this series is a Fourier series for Lebesgue integrable functions $f(t)$. In the general case the coefficients of the series are reconstructed by means of an $A$-integral.

UDC: 517.98

Received: 05.01.1995

DOI: 10.4213/mzm1747


 English version:
Mathematical Notes, 1996, 59:4, 373–391

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026