RUS  ENG
Full version
JOURNALS // Matematicheskie Zametki // Archive

Mat. Zametki, 1996 Volume 59, Issue 3, Pages 415–420 (Mi mzm1729)

This article is cited in 5 papers

A relationship between the Mahler measure and the discriminant of algebraic numbers

E. M. Matveev

Moscow State Textile Academy named after A. N. Kosygin

Abstract: In this note we show that in the well-known Dobrowolski estimate $\ln M(\alpha)\gg(\ln\ln d/\ln d)^3$, $d\to\infty$, where $\alpha$ is a nonzero algebraic number of degree $d$ that is not a root of unity and $M(\alpha)$ is its Mahler measure, the parameter $d$ can be replaced by the quantity $\delta=d/\Delta(\alpha)^{1/d}$, where $\Delta(\alpha)$ is the modulus of the discriminant of $\alpha$. To this end, $\alpha$ must satisfy the condition $\deg\alpha^p=\deg\alpha$ for any prime $p$.

UDC: 511

Received: 03.04.1995

DOI: 10.4213/mzm1729


 English version:
Mathematical Notes, 1996, 59:3, 293–297

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026