RUS  ENG
Full version
JOURNALS // Matematicheskie Zametki // Archive

Mat. Zametki, 2003 Volume 73, Issue 1, Pages 92–105 (Mi mzm172)

This article is cited in 3 papers

A Version of the Ruh–Vilms Theorem for Surfaces of Constant Mean Curvature in $S^3$

L. A. Masal'tsev

V. N. Karazin Kharkiv National University

Abstract: We study a version of the Gauss map $g\ :M^2\to S^2$ for a surface $M^2$ immersed in $S^3$ and prove an analog of the Ruh–Vilms theorem which states that this map is harmonic if $M^2$ has a constant mean curvature. As a corollary, we conclude that an embedded flat torus $T^2$ with constant mean curvature is a spherical Delonay surface.

UDC: 514

Received: 22.06.2001

DOI: 10.4213/mzm172


 English version:
Mathematical Notes, 2003, 73:1, 85–96

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026