RUS  ENG
Full version
JOURNALS // Matematicheskie Zametki // Archive

Mat. Zametki, 1996 Volume 59, Issue 2, Pages 278–283 (Mi mzm1714)

The variety of solutions of the singular generalized Cauchy–Riemann System

Z. D. Usmanov

Institute of Mathematics, Academy of Sciences of Republic of Tajikistan

Abstract: We prove that the equation
$$ 2\overline z\partial_{\overline z}w-\bigl(b(\varphi)+B(z)\bigr)\overline w=0,\quad z\in G, $$
in which $B(z)\in C^\infty(G)$, $B_0(z)=O(|z|)^\alpha)$, $\alpha>0$, $z\to0$, and
$$ b(\varphi)=\sum_{k=-m_0}^mb_ke^{ik\varphi}, $$
does not have nontrivial solutions in the class $C^\infty(G)$.

UDC: 517.956.2

Received: 25.04.1995

DOI: 10.4213/mzm1714


 English version:
Mathematical Notes, 1996, 59:2, 196–200

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026