Abstract:
We prove that the equation
$$
2\overline z\partial_{\overline z}w-\bigl(b(\varphi)+B(z)\bigr)\overline w=0,\quad
z\in G,
$$
in which $B(z)\in C^\infty(G)$, $B_0(z)=O(|z|)^\alpha)$, $\alpha>0$,
$z\to0$, and
$$
b(\varphi)=\sum_{k=-m_0}^mb_ke^{ik\varphi},
$$
does not have nontrivial solutions in the class $C^\infty(G)$.