This article is cited in
6 papers
Exact bounds for simultaneous approximation of functions of two variables and their derivatives by bilinear splines
M. Sh. Shabozov Tajik State University
Abstract:
We find the exact value of the expression
\begin{multline}\quad
\varepsilon^{(l,q)}\bigl(W^{(r,s)}H^{\omega_1,\omega_2}(G)\bigr)=\sup\bigl\{\|f^{(l,q)}(\cdot,\cdot) -S_{1,1}^{(l,q)}(f;\cdot,\cdot)\|_{C(G)}: f\in W^{(r,s)}H^{\omega_1,\omega_2}(G)\bigr\},
\end{multline}
where $\varphi^{(l,q)}(x,y)=\partial^{1+q}\varphi/\partial x^l\partial y^q$
(
$l,q=0,1$,
$1\le l+q\le2$) and
$S_{1,1}(f;x,y)$ is a bilinear spline interpolating
$f(x,y)$ in the nodes of the grid
$\Delta_{mn}=\Delta_m^x\times\Delta_n^y$ with
$\Delta_m^x$:
$x_i=i/m$ (
$i=\overline{0,m}$),
$\Delta_n^y$:
$y_j=j/n$ (
$j=\overline{0,n}$). Here
$W^{(r,s)}H^{\omega_1,\omega_2}(G)$ is the class of functions
$f(x,y)$ with continuous derivatives
$f^{(r,s)}(x,y)$ (
$r,s=0,1$,
$1\le r+s\le2$) on the square
$G=[0,1]\times[0,1]$ and with the modulus of continuity satisfying the inequality ($\omega(f^{(r,s)};t,\tau)\le\omega_1(t)+\omega_2(\tau)$, where
$\omega_1(t)$ and
$\omega_2(t)$ are the given moduli of continuity.
UDC:
517.5
Received: 07.10.1994
DOI:
10.4213/mzm1701