RUS  ENG
Full version
JOURNALS // Matematicheskie Zametki // Archive

Mat. Zametki, 1997 Volume 62, Issue 5, Pages 712–724 (Mi mzm1658)

This article is cited in 1 paper

Strict inequalities for the derivatives of functions satisfying certain boundary conditions

A. I. Zvyagintsev

Higher Administrative School of St. Peterburg's Administration

Abstract: For functions satisfying the boundary conditions
$$ f(0)=f'(0)=\dots=f^{(m)}(0)=0,\qquad f(1)=f'(1)=\dots=f^{(l)}(1)=0, $$
the following inequality with sharp constants in additive form is proved:
$$ \|f^{(n-1)}\|_{L_q(0,1)} \le A\|f\|_{L_p(0,1)}+B\|f^{(n)}\|_{L_r(0,1)}, $$
where $n\ge2$, $0\le l\le n-2$, $-1\le m\le l$, $m+l\le n-3$, $1\le p,q,r\le\infty$.

UDC: 517.5

Received: 26.03.1996
Revised: 08.04.1996

DOI: 10.4213/mzm1658


 English version:
Mathematical Notes, 1997, 62:5, 596–606

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026