RUS  ENG
Full version
JOURNALS // Matematicheskie Zametki // Archive

Mat. Zametki, 1997 Volume 62, Issue 5, Pages 700–711 (Mi mzm1657)

This article is cited in 3 papers

Compactness of support of solutions to nonlinear second-order elliptic and parabolic equations in a half-cylinder

G. V. Grishina

N. E. Bauman Moscow State Technical University

Abstract: We study equations of the form
$$ \begin{gathered} u_{tt}+Lu+b(x,t)u_t=a(x,t)|u|^{\sigma-1}u, \\-u_t+Lu=a(x,t)|u|^{\sigma-1}u, \end{gathered} $$
where $L$ is a uniformly elliptic operator and $0<\sigma<1$. In the half-cylinder $\Pi_{0,\infty}=\{(x,t):x=(x_1,\dots,x_n)\in \Omega,\ t>0\}$, where $\Omega\subset\mathbb R^n$ is a bounded domain, we consider solutions satisfying the homogeneous Neumann condition for $x\in\partial\Omega $ and $t>0$. We find conditions under which these solutions have compact support and prove statements of the following type: $u(x,t)=o(t^\gamma)$ as $t\to\infty$, then there exists a $T$ such that $u(x,t)\equiv0$ for $t>T$. In this case $\gamma$ depends on the coefficients of the equation and on the exponent $\sigma$.

UDC: 517.956

Received: 19.02.1996
Revised: 23.04.1997

DOI: 10.4213/mzm1657


 English version:
Mathematical Notes, 1997, 62:5, 586–595

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026