RUS  ENG
Full version
JOURNALS // Matematicheskie Zametki // Archive

Mat. Zametki, 1997 Volume 62, Issue 5, Pages 677–686 (Mi mzm1654)

This article is cited in 3 papers

Trigonometric series of classes $L^p(\mathbb T)$, $p\in\left]1;\infty\right[$ and their conservative means

I. N. Brui

Belarusian Institute of Law

Abstract: Suppose that a lower triangular matrix $\mu\colon[\mu_m^{(n)}]$ defines a conservative summation method for series, i.e.,
$$ \sup_{n\in{\mathbb Z}_0}\sum_{m=0}^n|\mu_m^{(n)}-\mu_{m+1}^{(n)}|<\infty,\qquad \forall m\in{\mathbb Z}_0 \quad \lim_{n\to\infty}\mu_m^{(n)}=\rho_m\in\mathbb R, $$
and the sequence $(\rho_m)$, $m\in{\mathbb Z}_0$, is bounded away from zero. Then the trigonometric series $\sum_{m=-\infty}^\infty\gamma_me^{imx}$ is the Fourier series of a function $f\in L^p(\mathbb T)$, where $p\in\left]1;\infty\right[$, if and only if the sequence of $p$-norms of its $\mu$-means is bounded:
$$ \sup_{n\in{\mathbb Z}_0}\biggl\|\sum_{m=-n}^n\mu_{|m|}^{(n)}\gamma_me^{imx}\biggr\|_p<\infty. $$
In the case of the Fejér method, we have the test due to W. and G. Young (1913). In the case of the Fourier method, we obtain the converse of the Riesz theorem (1927).

UDC: 517.518.456

Received: 14.08.1995

DOI: 10.4213/mzm1654


 English version:
Mathematical Notes, 1997, 62:5, 566–574

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026