RUS  ENG
Full version
JOURNALS // Matematicheskie Zametki // Archive

Mat. Zametki, 1997 Volume 62, Issue 3, Pages 404–417 (Mi mzm1622)

This article is cited in 8 papers

On a method for interpolating functions on chaotic nets

O. V. Matveev

Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences

Abstract: Suppose $m,n\in\mathbb N$, $m\equiv n(\operatorname{mod}2)$, $K(x)=|x|^m$ for $m$ odd, $K(x)=|x|^m\ln|x|$ for $m$ even ($x\in\mathbb R^n$), $\mathscr P$ is the set of real polynomials in $n$ variables of total degree $\le m/2$, and $x_1,\dots,x_N\in \mathbb R^n$. We construct a function of the form
$$ \sum_{j=1}^N\lambda_jK(x-x_j)+P(x), \qquad\text{where}\quad \lambda_j\in\mathbb R,\quad P\in\mathscr P,\quad \sum_{j=1}^N\lambda_jQ(x_j)=0\quad\forall Q\in\mathscr P, $$
coinciding with a given function $f(x)$ at the points $x_1,\dots,x_N$. Error estimates for the approximation of functions $f\in W_p^k(\Omega)$ and their $l$th-order derivatives in the norms $L_q(\Omega_\varepsilon)$ are obtained for this interpolation method, where $\Omega$ is a bounded domain in $\mathbb R^n$, $\varepsilon>0$, $\Omega_\varepsilon=\{x\in\Omega:\operatorname{dist}(x,\partial\Omega)>\varepsilon\}$.

UDC: 517.518

Received: 28.04.1994
Revised: 28.02.1996

DOI: 10.4213/mzm1622


 English version:
Mathematical Notes, 1997, 62:3, 339–349

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026